Galaxy-ML: An accessible, reproducible, and scalable machine learning toolkit for biomedicine
نویسندگان
چکیده
منابع مشابه
Dlib-ml: A Machine Learning Toolkit
There are many excellent toolkits which provide support for developing machine learning software in Python, R, Matlab, and similar environments. Dlib-ml is an open source library, targeted at both engineers and research scientists, which aims to provide a similarly rich environment for developing machine learning software in the C++ language. Towards this end, dlib-ml contains an extensible lin...
متن کاملdevelopment and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولThe Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update
High-throughput data production technologies, particularly 'next-generation' DNA sequencing, have ushered in widespread and disruptive changes to biomedical research. Making sense of the large datasets produced by these technologies requires sophisticated statistical and computational methods, as well as substantial computational power. This has led to an acute crisis in life sciences, as resea...
متن کاملACL2(ml): Machine-Learning for ACL2
ACL2(ml) is an extension for the Emacs interface of ACL2. This tool uses machine-learning to help the ACL2 user during the proof-development. Namely, ACL2(ml) gives hints to the user in the form of families of similar theorems, and generates auxiliary lemmas automatically. In this paper, we present the two most recent extensions for ACL2(ml). First, ACL2(ml) can suggest now families of similar ...
متن کاملReproducible Research Pattern Recognition and Machine Learning
This is a course on Reproducible Research (RR) [1] for research engineers working with software applications in Pattern Recognition (PR) and Machine Learning (ML) [2]. It motivates and explains concepts behind RR, an increasing trend in scientific publications in this niche, its implications and tools for implementing it on an individual or group levels. It is a hands-on course in the sense stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS Computational Biology
سال: 2021
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1009014